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Abstract 

Using Euler’s theorem on the integrability of the general anharmonic oscillator 
equation [1], we present three distinct classes of general solutions                         
of the highly nonlinear second order ordinary differential equation 
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( ) ( ) ( ) .03212

2
=+++ nxtfxtfdt

dxtf
dt

xd  The first exact solution is obtained        

from a particular solution of the point transformed equation 

( ) { },1,0,1,3,022 −−∈/=+ nTXdTXd n  which is equivalent to the 

anharmonic oscillator equation, if the coefficients ( ) 3,2,1, =itfi  satisfy an 

integrability condition. The integrability condition can be formulated as a 

Riccati equation for ( )tf1  and ( ) ,1 3
3 dt

df
tf  respectively. By reducing the 

integrability condition to a Bernoulli type equation, two exact classes of 
solutions of the anharmonic oscillator equation are obtained. 

1. Introduction 

The anharmonic oscillator is a physical system generalizing the 

simple linear harmonic oscillator ( ) ,02
02

2
=ω+ tx

dt
xd  where ( )tx  is the 

position coordinate, t is the time, and 0ω  is the oscillation frequency. In 

general, the time evolution of the space variable x of the anharmonic 
oscillator is governed by the following nonlinear second order differential 
equation [1, 2]: 

( ) ( ) ( ) ( ),43212

2
tfxtfxtfdt

dxtf
dt

xd n =+++   (1) 

where ( ) ,4,3,2,1, =itfi  and x are arbitrary real functions of t defined 

on a real interval ,ℜ⊆I  with ( )tfi  and ( ) ( ).ICtx ∞∈  The factors ( )tfi  

are physically interpreted as follows: ( )tf1  is a damping factor; ( )tf2  is a 

time dependent oscillation frequency coefficient; ( )tf3  is the simplest 

possible anharmonic term; ( )tf4  is a forcing term; and n is a real constant 

[2]. The equation of motion of the anharmonic oscillator is strongly 

nonlinear, and when the anharmonicity term ( ) nxtf3  is small, its 

solutions can be obtained by using perturbation theory. If the 
anharmonicity is large, then other numerical techniques need to be 
implemented. 
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The anharmonic oscillator equation (1) with specific values of the 
exponent n can be used to model many different physical systems. For 

,23=n  one obtains the Thomas and Fermi atomic model [3, 4], while 

the case 3−=n  corresponds to the Ermakov [5], or Pinney [6], equation. 

For ,1−=n  one obtains the Brillouin electron beam focusing system 

equation [7, 8], and 3=n  gives the case of the Duffing oscillator [9]. 

An interesting particular case of the general anharmonic oscillator 
equation (1) is the Ermakov-Pinney equation (EPE), which is a well-
known example of a nonlinear second order differential equation with 
important physical applications (we refer the reader to [10, 11] for a 
historical development and an excellent review of the properties of the 
EPE equation). The EPE is endowed with a wide range of physical 
applications, including quantum cosmology [12], dynamics of scalar field 
cosmologies and the braneworld scenario [13], quantum field theory      
[14, 15], nonlinear elasticity [16], nonlinear optics [17, 18], description of 
the wave function of Bose-Einstein condensates (BEC) at the mean-field 
level [19], the envelope of the electric field in nonlinear optics [20], 
amongst others. In this context, the EPE provides an effective description 
for the time-dependence of the relevant spatially dependent field, 
typically being associated with its width both in the BEC [21, 22] and in 
optical settings [23]. The mathematical analysis and structure of the EPE 
have been extensively discussed in [24-27]. 

Note that for generic values of the coefficients, Equation (1) is 
equivalent to a third order autonomous dynamical system, which 
generically admits no closed form general solution [2]. The mathematical 
properties and applications of particular forms of Equation (1) have been 
widely investigated, such as the partial integrability of the anharmonic 
oscillator [2], the time-dependent driven anharmonic oscillator and its 
adiabaticity properties [28], toroidal p-branes, anharmonic oscillators, 
and (hyper) elliptic solutions [29], conformal mappings and other power 
series methods for solving ordinary differential equations [30], and the 
anharmonic oscillator in the context of the optimized basis expansion 
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[31]. The Painlevé analysis of Equation (1) was performed in [32]. 
Specific transformation properties of the anharmonic oscillator were 
considered in [1], where an excellent review of the Lie symmetries 
approach to Equation (3) can also be found. 

The most general conditions on the functions ,, 21 ff  and ,3f  for 

which Equation (3) may be integrable, as well as conditions for the 
existence of Lie point symmetries, were obtained in [1]. Time-dependent 
first integrals were also constructed. The main results of [1] are that if 

{ },1,0,1,3 −−∈/n  then Equation (3) can be point transformed to an 

equation of the form ( ) ,022 =+ TXdTXd n  can be linearized as 

,0\,0 22
22 ℜ∈=+ kkdTXd  and it admits a two-dimensional Lie 

point symmetry algebra. 

It is the purpose of the present paper to obtain, by using the results 
of [1], some classes of exact solutions of the anharmonic oscillator 
equation (1) without the forcing term. The first solution is obtained by 
considering a particular solution of the point transformed equation 

( ) ,022 =+ TXdTXd n  equivalent to the initial anharmonic oscillator 

equation. The integrability condition obtained in [1] for the anharmonic 
oscillator can be formulated in terms of a Riccati equation for the ( )tf1  

and ( ) dt
df

tf
3

3

1  terms, respectively. By imposing some specific constraints 

on the coefficients of the Riccati equation, namely, by requiring that the 
Riccati equation can be reduced to a Bernoulli equation, two distinct 
classes of exact solutions of the anharmonic oscillator equation with zero 
forcing term are obtained. In the analysis outlined below, we shall use 
the generalized Sundman transformations ( ) ( )xtFTX ,=  and 

( )dtxtGdT ,=  [33-35]. The latter have been widely applied in the 

literature [33, 34], namely, in the study of the mathematical properties of 
the second order differential equations, and the third order differential 
equation 
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( ) ( ) ( ) ( ) .04322

2
13

3
=++++ thxthdt

dxth
dt

xdth
dt

xd   (2) 

The present paper is organized as follows. Three distinct classes of 
general solutions of Equation (1) without the forcing term, which 
explicitly depict the time evolution of the anharmonic oscillator, are 
presented in Section 2. We discuss and conclude our results in Section 3. 

2. Exact Integrability Cases for the  
Anharmonic Oscillator 

In the present section, by starting from the integrability condition of 
the anharmonic oscillator equation obtained in [1], we obtain three cases 
of exact integrability of the anharmonic oscillator without forcing. 

2.1. The integrability condition for the anharmonic oscillator 

In the following, we assume that the forcing term ( )tf4  vanishes in 

Equation (1). Hence the latter takes the form 

( ) ( ) ( ) .03212

2
=+++ nxtfxtfdt

dxtf
dt

xd   (3) 

An integrability condition of Equation (3) can be formulated as the 
following: 

Theorem 1 ([1]). If and only if { },1,0,1,3 −−∈/n  and the 

coefficients of Equation (3) satisfy the differential condition 

( ) ( ) ( ) ( )

2
3

322
3

2

3
2

1
3
41

3
1







+

+−
+

= dt
df

tfn
n

dt
fd

tfntf  

( ) ( ) ( ) ( )
( )

( ),
3
12

3
21

3
1 2

12
1

1
3

32 tf
n

n
dt
df

ntfdt
df

tfn
n

+

++
+

+





+

−+  (4) 

with the help of the pair of transformations 

( ) ( ) ( )
( )

,13
2

3
1

3
φφ∫

++=
dft

nn etftCxTX  (5) 
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( ) ( )
( ) ( )

,, 13
1

3
2

2
1

3 ξξ=
φφ∫ξ

+
−

+
−

∫ defCtxT
dft

n
n

n
n

 (6) 

where C is an arbitrary constant, Equation (3) can be point transformed 
into the second order differential equation for ( ),TX  

( ) .02

2
=+ TX

dT
Xd n   (7) 

The general solution of Equation (7) is given by 

,1,

12
1

0

0 −≠









+

−

+=
+∫ n

n
XC

dXTT
n

   (8) 

where 0T  and 0C  are arbitrary constants of integration. For 

convenience, we have denoted ,,, 0000 ±±± === TTCCTT  and .±=  

By substituting the integrability condition given by Equation (4) into 
Equation (3), we obtain the following integrable differential equation: 

( ) ( ) ( ) ( )

2
3

322
3

2

3
12

2 1
3
41

3
1













+

+−
+

++ dt
df

tfn
n

dt
fd

tfndt
dxtf

dt
xd  

( ) ( ) ( ) ( )
( )

( ) ( ) ,0
3
12

3
21

3
1

3
2

12
1

1
3

32 =+






+

+
+

+
+





+

−+ nxtfxtf
n

n
dt
df

ntfdt
df

tfn
n  

{ }.1,0,1,3 −−∈/n  (9) 

2.2. A particular exact solution for the anharmonic oscillator equation 

The general solution of Equation (7) can be given as 

( )
( ) ( ) ( ) ,1,1;1

2;12
3,112

1
0

1
12

1
0

0
0 −≠








++

+
+
+

+
−+

+=
++

nnC
X

n
n

n
nFn

XnCXCTT
nn  

(10) 
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where ( )dcbaF ;;,12  is the hypergeometric function. A particular 
solution of Equation (7) is given by 

( ) [ ( )] ( )
( ) ,12

1 1
1

1
2 2

0
n

n n
nTTTX

−
−












+
−−−=   (11) 

where we have defined ( ) ( ),TXTX ±=  and we have taken the arbitrary 
constant of integration as zero, .00 =C  In order to have a real value of 
the displacement ( ),tx  one must impose the condition 1−<n  on the 
anharmonicity exponent n. From Equations (5) and (11), we obtain the 
result 

( ) [ ( )] ( )
( ) ( )

( )
,12

11 13
2

3
11

1

1
2

3

2
0

φφ∫−−
++

−
−












+
−−−=

dft
nn

n
n etfn

nTTCtx   (12) 

where we have denoted ( ) ( ),txtx ±=  for simplicity. 

By inserting Equation (6) into Equation (12) yields the general 
solution of Equation (9) describing the time evolution of anharmonic 
oscillator. Therefore, we have obtained the following: 

Corollary 1. The anharmonic oscillator equation (9) has the 
particular solution 

( ) ( )
( ) ( )

( )
( )

,13
2

3
11

2
13

1
3

2
2

1

3030
φφ∫−−φφ∫

++
−ξ

+
−

+
−









−ξξ= ∫

dfdft t
nn

n
n

n
n

n
etfTdefCxtx  

,1−<n   (13) 

where we have defined ( )
( ) .12

1 1
1

2
1

0
n

n
nCx

−












+
−−= −  

2.3. Second integrability case for the anharmonic oscillator equation 

Now, by rearranging the terms of Equation (4) yields the following 
Riccati equation for ( )tf1  given by: 

( ) ( ) ( ) ( ) ( ),2
11

1 tftctftbtadt
df

++=  (14) 
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where the coefficients ( ) ( ),, tbta  and ( )tc  are defined as 

( ) ( ) ( ) ( ) ( ) ,1
32
4

2
1

2
3 2

3
32

3
2

3
2 





+
++−+= dt

df
tfn

n
dt

fd
tftfnta  (15) 

( ) ( ) ( ) ,1
32

1 3
3 





+
−= dt

df
tfn

ntb  (16) 

( ) .3
1

n
ntc

+
+−=  (17) 

We consider now that the coefficient ( )ta  of Equation (14) vanishes, 

so that Equation (15) can be written as 

( ) ( ) ( ) ( ) .1
3
41

3
1 2

3
322

3
2

3
2 





+

+−
+

= dt
df

tfn
n

dt
fd

tfntf  (18) 

Hence the Riccati equation (14) becomes a Bernoulli type equation, with 
the general solution given by 

( )
( ) ( )

( ) ( )
,

32
1

32
1

33
1

1

3
1

φφ∫+

=
+
−

+
−

+
+ dfC

tf
tf

n
n

n
n

t
n
n

 (19) 

where 1C  is an arbitrary constant of integration. 

By substituting Equations (18) and (19) into Equation (3), the latter 
yields the following differential equation: 

( ) ( )

( ) ( )
dt
dx

dfC

tf
dt

xd

n
n

n
n

t
n
n
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+
+
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+
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+
+ 32
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( ) ( ) ( ) ( ) .01
3
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3
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3
2

3
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3
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3
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+−
+

+ nxtfxdt
df

tfn
n

dt
fd

tfn  (20) 

 



INTEGRABILITY CASES FOR THE ANHARMONIC … 123

Therefore, we have obtained the following: 

Corollary 2. The general solution of Equation (20), describing the 
time evolution of the anharmonic oscillator, is given by 

( ) ( )

( )
( ) ( )

( ) ( )

n

n
n

n
n

n
n

n
n

n
n

TdefCxtx

d

vdvfC

f

t

−

+
−

φ
+
+

+
−

ξ
+
−

+
−



























−ξξ=
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φ
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1
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1
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1

3
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1

3
2

2
1

030  

( )

( ) ( )

( ) ( )
{ }.1,0,1,3,

32
1

33
1

1

32
1

3
3

2

3
1

3 −−∈/×

φ





















ξξ∫+

φ
∫−

− +
−

φ
+
+

+
−

+

+ netf

d

dfC

f

n
n

n
n

n
n

t
n

n  (21) 

2.4. Third integrability case for the anharmonic oscillator equation 

Now, by introducing a new function ( )tu  defined as 

( ) ( ) ,1 3
3 dt

df
tftu =  (22) 

or equivalently, 

( ) ( ) ,033
φφ∫= dut

eftf   (23) 

where 03f  is an arbitrary constant of integration, after substituting ( )tu  

into Equation (4) yields the following Riccati equation for ( ),tu  given by: 

( ) ( ) ( ) ( ) ( ),2
111 tutctutbtadt

du ++=  (24) 

where the coefficients are defined as 

( ) ( ) ( ) ( ) ( ) ,23
123 12

121 dt
dftfn

ntfnta −
+
+−+=  (25) 
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( ) ( ),3
1

11 tfn
ntb

+
−=  (26) 

( ) .3
1

1 ntc
+

=  (27) 

We consider that the coefficient ( )ta1  of Equation (24) vanishes, as 

before, so that Equation (25) can be written as 

( ) ( )
( )

( ) ( ) .3
2

3
12 12

122 dt
df

ntf
n
ntf

+
+

+

+=  (28) 

Then the Riccati equation (24) becomes a Bernoulli type equation, 
with the general solution given by 

( )
( )

( )
,

13
1

13
1

3
1

2 ξ∫−

=
φφ∫

+

φφ∫

ξ
+
−

+
−

deC

etu
dft

n

df

n
n

t
n
n

 (29) 

where 2C  is an arbitrary constant of integration. Thus, the coefficient 

( )tf3  of Equation (3) is readily given by 

( )

( )

( )

.
13

1

3
12

13
1

033

vd

d
dfn

n
ev

nC

dfv
n
n

et

eftf

/



















∫

ξ
φφξ∫

+
−

/∫
+

−

φφ/∫
+
−

=  (30) 

By substituting Equations (28) and (30) into Equation (3), the latter 
yields the following differential equation: 

( ) ( )
( )

( ) ( ) xdt
df

ntf
n
n

dt
dxtf

dt
xd
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 (31) 
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Therefore, we have obtained the following: 

Corollary 3. The general solution of Equation (31), describing the 
time evolution of an anharmonic oscillator, is given by 

( )
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 (32) 

3. Conclusion 

In the limit of a small function ( ),TX  and by assuming that the 

constant n is large, ,+∞→n  in view of Equation (7), we obtain a linear 
relation between ( )TX  and ( ),tT  given by 

( ) ( ).2 00 TTCTX −=    (33) 

With the help of Equations (5) and (6), the approximate solution of 
Equation (3), describing the time evolution of anharmonic oscillator is 
given by 

( ) ( )
( ) ( )

( )
( )

.2 13
2

3
1

13
1

3
2

2
1

303
0 φφ∫−−φφ∫

++
ξ

+
−

+
−









−ξξ≈ ∫

dfdft t
nnn

n
n

n
etfTdefCC

Ctx   

(34) 

With this approximate solution, once the functions ( )tf1  and ( )tf3  are 

given, one can study the time evolution of the anharmonic oscillator for 
small ( )tX  and for a very large anharmonicity exponent n. 
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In the present paper, by extending the results of [1], where the first 
integral of Equation (3) was obtained, we have obtained three classes of 
exact general solutions of Equation (3), by explicitly showing that the 
theorem obtained in [1] is very useful for obtaining the explicit general 
solutions of the anharmonic oscillator type second order differential 
equations. 

In order to have real solutions, the general solutions equations (13), 
(21), and (32) of the second order differential equations (9), (20), and (31), 
respectively, must obey the condition ,1−<n  thus leading to an 

anharmonic term of the form ( ) .0,3 >nxtf n  Such a term may be 

singular at .0=x  Note that in [36], the author has used the degree 
theory to remove a technical assumption in the non-resonance results in 
[37] and to obtain a complete set of the non-resonance conditions for 
differential equations with repulsive singularities. In doing so, a nice 

relation between the Hill’s equation ( ) ( ) 02

2
=η+ txt

dt
xd  and the EPE was 

established. This relation itself is useful in studying the stability of 
periodic solutions of Lagrangian systems of degree of freedom of .23  

It is well-known that the second order ordinary differential equations 

with anharmonic term of the form ( ) nxtf3  entail many problems in the 

applied sciences. Some examples are the Brillouin focusing system, and 
the motion of an atom near a charged wire. The Brillouin focusing system 
can be described by the second order differential equation 

( ) ( ) ( ) ,cos12

2

txtxt
dt

xd β=+α+  (35) 

where α  and β  are positive constants. In the context of electronics, this 

differential equation governs the motion of a magnetically focused axially 
symmetric electron beam under the influence of a Brillouin flow, as 
shown in [7]. From the mathematical point of view, this differential 
equation is a singular perturbation of a Mathieu equation 
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( ) ( ) ,02cos22

2
=−+ txtqa

dt
xd   (36) 

where a and q are arbitrary constants. Existence and uniqueness of 
elliptic periodic solutions of the Brillouin electron beam focusing system 
has been discussed in [8]. Hence, the results obtained in the present 
paper could open the possibility of obtaining some exact solutions of non-
linear differential equations of scientific or technological interest. 
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